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Abstract
A major difficulty in realizing a solid-state quantum computer is the reliable
measurement of the states of the quantum registers. In this paper, we propose
an efficient readout scheme making use of the resonant tunnelling of a ballistic
electron produced by a single-electron pump. We treat the measurement
interaction in detail by modelling the full spatial configuration and show that for
pumped electrons with suitably chosen energy the transmission coefficient is
very sensitive to the qubit state. We further show that by using a short sequence
of pumping events, coupled with a simple feedback control procedure, the qubit
can be measured with a high accuracy.

PACS numbers: 03.67.Lx, 85.35.−p, 85.35.Gv, 73.23.Hk

Reliable measurement of qubits is a key issue in the quantum computation, either in the output
register [1] or as a central ingredient in the computation [2]. For solid-state qubits, such as
quantum dots [3] or Cooper-pair boxes (CPBs) [4], a number of measurement techniques have
been proposed. One approach is to place the qubit adjacent to a single-electron transistor
(SET), superconducting SET (SSET) or quantum point contact (QPC) [5–17]. In this method,
the state of the qubit affects the tunnelling current through the SET or QPC, and this current
provides the readout. Much experimental work on this method has been performed by the
group of Clark [18, 19], and the measurement of single qubits with an SET has been realized
by the groups of Nakamura [20, 21] and Williams [22]. Such a measurement has also been
realized by Hayashi et al by directly inducing tunnelling from the double dot [23]. However,
none of these has yet been realized as a ‘single-shot’ measurement. Two further methods for
measuring a charge qubit have been proposed and realized as single-shot measurements. The
first is a scheme by Vion et al [24] in which the state of a CPB is converted into a supercurrent.
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Figure 1. A schematic diagram of the readout system. The electron is pumped through the RT
barriers to the capacitor C, the charge on which is measured by an SET electrometer.

The second has been implemented by the group of Martinis et al [25, 26] and is a partially
destructive measurement in which a tunnelling event is induced by a transition to a third level.
A further measurement scheme using a stripline resonator has also been suggested by Sarovar
et al [27].

Here we consider a readout scheme for a qubit that employs a single-electron pump
[28, 29]. In this case, the measurement is obtained by passing a controlled sequence of
single-electron pulses through a quantum wire placed adjacent to the qubit. We take the
qubit to be formed by a double quantum dot, and in this case we can treat the interaction
of the electrons with the system in detail, allowing us to characterize the disturbance to the
system. We find that this disturbance does significantly limit the amount of information
which can be extracted with the raw measurement. However, because the pump allows us
to control the sequence of electron pulses, the qubit may be manipulated by the application
of unitary gates between the pulses. We show that, as long as the pumped electrons have a
reasonably well-defined momentum, such gates may be applied in a process of feedback so
as to correct most of the unwanted disturbance. This provides a near-perfect von Neumann
measurement of the qubit within a small number of pulses. We note that sequences of ‘pulsed’
measurements, and sequential correction using feedback, have also been considered by Jordan
et al for measurements with a QPC [30, 31].

Our scheme is similar to those involving an (S)SET or quantum point contact, in that the
information is extracted as electrons pass by the qubit. However, analyses of these schemes
have invariably been performed assuming a simple interaction between the qubit and the probe
system. This interaction is assumed to be proportional to the product of a Pauli operator for
the qubit and an operator for the probe system [5–15]. The accuracy of this approximation
will likely depend on the system parameters (such as the well depth of the quantum dot), and
any deviation from this form will in general cause the passing electrons to disturb the system.
Since many electrons are required to read out the qubit, a small unwanted disturbance by each
electron could potentially impose a significant limit on the measurement. An advantage of our
scheme is that the electrons are ballistic, and this allows us to model the Coulomb interaction
between the probe electrons and the electron in the quantum dot in detail.

The readout configuration consists of a nanowire connected to a single-electron pump
[28, 29] and resonance tunnelling (RT) barriers placed near the qubit, which consists of a
single electron in the two coupled double quantum dots separated by a central barrier. The
localization of the electron on the right dot (i.e. closer to the wire) represents the state |1〉,
while the localization on the left dot represents the state |0〉. Figure 1 shows a schematic
representation of the configuration. An electron is pumped through the RT barriers to the
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capacitor C. The charge on C is then measured using an SET electrometer to determine
whether the electron was reflected or transmitted by the barriers, and this provides information
regarding the charge state of the dot. Since the electron on the capacitor is well separated from
the rest of the system, and since its precise state is unimportant, the measurement is robust
against any details of the interaction with the SET electrometer, which can perform the charge
measurement with a very high accuracy [32]. The single-electron pump produces electrons
with a reasonably well-defined and tunable energy, and the device is operated in the ballistic
transport regime.

In modelling the system, we include in the Hamiltonian the kinetic energy operators of
the electron in the nanowire and the electron in the quantum dots, the Coulomb interaction
between the two electrons, the potential of the RT barriers for the electron in the nanowire
and the confinement potential for the electron in the quantum dots. Apart from adopting
the effective mass and permittivity approximation to account for lattice and screening effects
due to the solid environment and considering the spin-related relativistic terms negligibly
small, this model includes all perceptible interactions in the system and allows all possible
states for the qubit electron in the coupled quantum dots. It is therefore expected to reflect
accurately the quantum dynamics of the system during the pumping of the electron across the
RT barriers. The measurement of the charge on the electrode at the completion of a pump
cycle can be performed with great accuracy [32], and may therefore be described as a von
Neumann measurement which distinguishes the sign of the final momentum of the pumped
electron.

Details of the model

The joint system composed of the double quantum dot and the electron in the nanowire is
described by the wavefunction ψ(r1, r2, t), where r1 = (x1, y1) is the position of the electron
in the coupled quantum dots, r2 = (x2, y2) is the position of the electron in the nanowire
and t is the time. We will often drop these arguments in the following in order to keep the
notation compact. The Schrödinger equation that governs the time evolution of the system
wavefunction is

ih̄
∂ψ

∂t
= Hψ, (1)

where the system Hamiltonian is H = Ĥ dot + Ĥ wire + Ĥ int, Ĥ dot = −h̄2/(2m∗)∇2
r1

+ Vdot(r1)

is the Hamiltonian for the electron in the coupled dots, Ĥ wire = −h̄2/(2m∗)∇2
r2

+ Vwire(r2)

is the Hamiltonian for the electron in the wire and Ĥ int = 1/(4πε|r1 − r2|) describes the
interaction between the two electrons. The effective mass of the mobile electrons is denoted
by m∗ and ε is the effective permittivity. If, for example, the qubit system and the nanowire
detector are built in an AlGaAs/GaAs interface, the effective mass and permittivity are given
by m∗ = 0.0667me and ε = 12.9ε0 [33].

To simulate the evolution of the system we use the Chebyshev–Fourier scheme as detailed
in [34]. Briefly, this method approximates the exponential time propagator by a Chebyshev
polynomial expansion

ψ(t + �t) = e−i(Eu+El )�t/2
N∑

i=0

ai(α)Ti(−iH̃)ψ(t), (2)

where Eu and El are the upper and lower bounds on the energies sampled by the wavepacket,
α = (Eu−El )�t/2, ai(α) = 2Ji(α) except for a0(α) = J0(α), Ji(α) are the Bessel functions of
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Figure 2. Nanowire with the RT barriers as defined by equation (4).

the first kind, and Ti are the Chebyshev polynomials. To ensure convergence, the Hamiltonian
must be normalized according to H̃ = [2H − Eu − El]/(Eu − El).

We choose the computational basis states of the qubit, |0〉 and |1〉, to be mutually
orthonormal linear combinations of the lowest two energy eigenstates of the double dot system.
Since these states are not the energy eigenstates, the system will oscillate between them, and
we must therefore ensure that the duration of the measurement is very small compared to this
oscillation time. We model the double dot using the potential

Vdot(x1, y1) = −V0 exp

(
− m∗

2V0

(
x2

1 + (y1 − yc)
2
)
ω2

)

−V0 exp

(
− m∗

2V0

(
x2

1 + (y1 + yc)
2
)
ω2

)
, (3)

where yc = 143 nm, V0 = 5.99 meV and h̄ω = 0.818 meV describe a typical double dot.
The wire RT barriers, as shown in figure 2, are described by

Vwire(x2, y2) = vx

cosh2((x2 − r)/s)
+

vx

cosh2((x2 + r)/s)

+ vy(1 − �(y2 + d + δy2)�(−y2 − d + δy2)), (4)

where vx = 1.09 meV, r = 143 nm and s = 81.9 nm, � is Heaviside’s step function,
vy � vx, δy2 is of a small value representing a very narrow wire and d = 287 nm is the
distance between the nanowire and the centre of the coupled quantum dots in the y-direction.

Analysis of the measurement

Prior to the measurement, the electron in the double dot and the electron in the nanowire are
spatially well-separated, so the state of the combined system is ρ ⊗ |ψ〉 〈ψ |, where ρ is the
state of the qubit and |ψ〉 is the state of the electron incident on the RT barriers. We take the
state of this electron to be a Gaussian wavepacket. We include the first four eigenstates of
the dot in our numerical simulation, but for the sake of the following discussion, we will
assume that the dot contains only the two computational states (which it very nearly does).
After the interaction, the state of the system is Uρ ⊗ |ψ〉 〈ψ | U †, where the unitary operator
U acts in the joint space, and the qubit and the electron become entangled. For a fictitious
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observer who performs a von Neumann measurement of the momentum of the (now outgoing)
electron, the final state, on obtaining the momentum p, is a normalized version of

ρp = 〈p| ⊗ I (Uρ ⊗ |ψ〉 〈ψ | U †)I ⊗ |p〉
= ApρA†

p (5)

for some operators Ap which satisfy
∫

A
†
pAp dp = I , and which completely characterize the

measurement process. The probability that the final momentum is p is Tr
[
A

†
pApρ

]
, where this,

and all subsequent traces, are taken over the qubit system. Of course, the measurement we
actually make determines only whether the final momentum of the qubit is positive or negative.
The probability that we will detect a transmission is thus P+ = ∫ ∞

0 Tr
[
A

†
pApρ

]
dp, that we

will detect a reflection is P− = ∫ 0
−∞ Tr

[
A

†
pApρ

]
dp = 1 − P+ and the corresponding final

states are ρ+ = ∫ ∞
0 ApρA

†
p dp/P+ and ρ− = ∫ 0

−∞ ApρA
†
p dp/P−. We note that the operators

Ap are matrices with elements A
ij
p = 〈i| 〈p| U |ψ〉 |j 〉 (where {|i〉} are a basis for the electron

in the double dot) and can therefore be obtained using exclusively pure state simulations.
From the numerical results, we find that the interaction with the qubit causes a very

little change in the energy of the pumped electron, namely the scattering is essentially
elastic. While we do not assume elastic scattering in obtaining our results, such an
assumption is conceptually useful. If the scattering is completely elastic, then one can
write the operators as Ap = Ãp| 〈p|ψ〉 |2, where Ãp are independent of the initial state.
If we select the momentum of the incident electron so that it is sharply peaked at p, then
the only operators which contribute to the measurement are those at p and −p. In this case
the measurement is described solely by the two operators Ap and A−p so that the probabilities
are P+ = Tr

[
Ã

†
pÃpρ

]
and P− = Tr

[
Ã

†
−pÃ−pρ

]
, and the final states are ρ+ = ÃpρÃ

†
p dp/P+

and ρ− = Ã−pρÃ
†
−p dp/P−.

If the location of the qubit in the double dot has a large effect on the transmission
coefficient of the barriers, then a single-measurement cycle (consisting of a pumping event
followed by a measurement of the electrode) will extract a lot of information about the state of
the qubit in this basis. However, in general, both states give some chance of transmission and a
single cycle will not therefore discriminate completely between the basis states. Nevertheless,
if the measurement operators Ap are diagonal in this basis, then the measurement will cause
no undesirable disturbance. In this case, a complete von Neumann measurement could be
approached arbitrarily closely by simply repeating the pump/measurement cycle the required
number of times. However, the operators Ap do not have this property, and therefore do cause
a disturbance which limits the total amount of information which can be extracted simply by
repetition alone.

Using the polar decomposition theorem, we can write the operator Ap as the product of

a unitary Up and a positive operator Pp = (
A

†
pAp

)1/2
so that Ap = UpPp. It is Pp which

changes the entropy of the system and thus performs the extraction of information. This
information is extracted in the eigenbasis of Pp; that is, it is information about which of the
eigenstates of Pp the system is in. The imperfection of the measurement can therefore be
understood as resulting because the positive operator Pp is diagonal in the wrong basis, and/or
because Up causes an additional disturbance. Now, if our measurement is described by only
two operators, then it is easy to show that Ps for both are diagonal in the same basis. As a
result, we can correct for any error in the measurement basis by applying a unitary to select
the correct basis. Secondly, upon obtaining the measurement result, since we know which
of the Us has been applied (being either Up or U−p), we can correct for it by applying the
Hermitian conjugate after the measurement in what is a simple example of a feedback control
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Figure 3. The transmission coefficients of the RT barriers are plotted here as a function of the
energy of the pumped electron. The solid and dashed lines give the transmission when the qubit is
in the states |0〉 and |1〉, respectively.

procedure [35–39]. Therefore, when the measurement has only two operators we can correct
completely for any undesirable disturbance and obtain a complete von Neumann measurement
by repetition. In our case, such a perfect correction is not possible because the scattering is
not completely elastic and the momentum of the electron has a finite spread. Nevertheless, we
find that we can improve the performance significantly by using an initial basis change and
unitary feedback at each pump/measurement cycle designed to correct for the disturbance of
the operators Ap at the centre of the electron wavefunction.

Results

To quantify the accuracy of the measurement we proceed as follows. We encode 1 bit of
information in the qubit using the ensemble consisting of the computational basis states
chosen with equal probabilities. We then calculate the amount of information which the
measurement fails to extract F = 1 −M , where M is the mutual information in bits [40]. This
is the residual uncertainty left after the measurement is made. The smaller the F the more
perfect the measurement.

We now examine the transmission profile of the RT barriers as a function of the incident
energy for both the states |0〉 and |1〉, as shown in figure 3. We find that at energy E = 16.4 meV,
the RT barriers provide a highly sensitive meter of the qubit state. The residual uncertainty,
F, for a measurement using a pumped electron with this average energy is plotted in
figure 4. Up to ten repetitions of the pump cycle, both with and without the correcting
feedback, are employed. We also calculate this residual uncertainty for a range of values of
the energy uncertainty, �E = 2%, 2.8% and 4.2% of the mean energy. Current experiments
with electron pumps indicate that spreads at least this narrow should be achievable [28, 29].
The dashed lines give the results without feedback (for six values of the energy uncertainty),
and we see in this case that the first pump cycle extracts up to about 90% of the information,
and subsequent cycles extract virtually no further information, due to the disturbance caused
by the first cycle. However, with the simple feedback procedure described above, which
includes an initial rotation, the second pump cycle extracts considerably more information, as
do subsequent pump cycles, plateauing at about the sixth cycle. The result is a measurement
with high accuracy, in which the residual uncertainty is less than two parts in a thousand. For
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Figure 4. The residual uncertainty is plotted here for a single-qubit measurement using a sequence
of pump/measurement cycles. Each curve shows the increase in accuracy as the number of pump
cycles is increased. The dashed lines are measurements without feedback, and the solid lines with
feedback, both using an incident electron energy of E = 16.4 meV. The three curves for each
case, from bottom to top, are for incident energy uncertainties of �E = 2%, 2.8% and 4.2%. For
comparison, the solid circles represent the residual uncertainty for E = 17.6 meV with �E = 2%.

comparison, we also evaluate the measurement obtained when the incident energy is E =
17.6 meV with an energy spread �E = 2%. In this case, the transmission is not as sensitive to
the qubit state, and ten measurement cycles are not sufficient to reduce the residual uncertainty
below 15%.
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